No dia 20 de setembro de 2015, mais precisamente às 11:49 UTC (08:49, hora local) foi registrado um tremor de de terra nas mediações das cidades de João Câmara, Pureza e Poço Branco, local onde em 1986 ocorreu um abalo sísmico que ficou muito famoso no país pela sua magnitude, que chegou a 5.0.A Região já é monitorada pelas estações do LABSIS/UFRN e segundo os especialistas, são tremores que não são de causar pânico a população, mas, devido a não previsão desses fenômenos, orientam que ao menor sinal de abalo os moradores saiam das suas residências o quanto antes. O tremor na região de João Câmara do dia 20/09/2015 chegou a 3.6 de magnitude preliminar e as suas origens é fruto de pesquisa por parte dos cientistas.
O que dizem as pesquisas?
Os terremotos são fenômenos que podem ser causados por falhas geológicas, vulcanismos e, principalmente, pelo encontro de diferentes placas tectônicas. A maioria dos abalos sísmicos é provocada pela pressão aplicada em duas placas contrárias. Portanto, as regiões mais vulneráveis à ocorrência dos terremotos são aquelas próximas às bordas das placas tectônicas. Na América do Sul, os países mais atingidos por terremotos são o Chile, Peru e Equador, pois essas nações estão localizadas em uma zona de convergência entre as placas tectônicas de Nazca e a Sul-Americana.
O Brasil está situado no centro da placa Sul-Americana, que atinge até 200 quilômetros de espessura. Os sismos nessa localidade raramente possuem magnitude e intensidade elevadas. No entanto, existe a ocorrência de terremotos no território brasileiro, causados por desgastes na placa tectônica, promovendo possíveis falhas geológicas. Essas falhas, causadoras de abalos sísmicos, estão presentes em todo o território nacional, proporcionando terremotos de pequena magnitude; alguns deles são considerados imperceptíveis na superfície terrestre.
Segundo o Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (USP), no século XX foram registradas mais de uma centena de terremotos no país, com magnitudes que atingiram até 6,6 graus na escala Richter. Porém, a maior parte desses abalos não ultrapassou 4 graus.
Em um trabalho na Geophysical Research Letters, o sismólogo Marcelo Assumção e o geofísico Victor Sacek apresentam uma explicação – e, para muitos, mais convincente – para a concentração de tremores em Goiás e Tocantins. Em algumas áreas dessa zona sísmica a crosta terrestre é mais fina do que em boa parte do país e encontra-se tensionada pelo peso do manto, a camada geológica inferior à crosta e mais densa do que ela. Medições da intensidade do campo gravitacional nessas áreas de crosta fina indicam que, ali, há um espessamento do manto. Essa combinação faz essas duas camadas de rocha – a crosta e a região superior do manto, que do ponto de vista físico se comportam como uma estrutura única e rígida chamada pelos geólogos de litosfera – vergarem como um galho prestes a se romper. Nessa situação, a litosfera pode trincar como uma régua de plástico que é curvada quando se tenta unir suas extremidades.
“A litosfera tende a afundar onde ela é mais densa e a subir onde a densidade é menor”, explica Assumpção. “Essas tendências causam tensões que produzem falhas e, eventualmente, provocam sismos”, completa o sismólogo do IAG, coordenador da Rede Sismográfica do Brasil, que monitora os terremotos no país.
Durante uma conversa em sua sala no início de abril, Sacek, coautor do estudo, pegou um livro de capa flexível para ilustrar o que ocorre no trecho da zona sísmica Goiás-Tocantins onde se encontra Mara Rosa. “Supondo que esse livro represente a litosfera da região, um acréscimo de carga no interior da litosfera, por haver uma proporção maior de rochas do manto [mais densas], vai fazê-la sofrer uma flexura”, explicou, colocando o livro na posição horizontal e pressionando suas laterais, o que o fez se dobrar como se um bloco de pedra estivesse colado à capa inferior. Como resultado, a parte superior é submetida a forças de compressão e a inferior a forças de distensão. “Embora seja rígida, a litosfera tem alguma flexibilidade e resiste até certo ponto à deformação”, diz Sacek. “Mas a partir de determinado limite ela pode vergar e se romper.”
Anos atrás, analisando o mapa da distribuição de sismos no Brasil, Assumpção percebeu que a maioria deles ocorria no trecho de Goiás e Tocantins no qual em 2004 o geofísico Jesús Berrocal, ex-professor da USP, havia identificado uma anomalia gravimétrica. Lá o campo gravitacional é anormalmente elevado para uma região de planalto com altitude média entre 300 e 400 metros. Naquelas terras planas e relativamente baixas – por exemplo, não existem cadeias de montanhas ali – não há excesso de massa sobre a superfície que justifique a flexura da litosfera. Logo, concluiu Assumpção, essa massa só poderia estar embaixo da terra. Provavelmente em regiões profundas como as camadas mais superficiais do manto, uma vez que a crosta só tem 35 quilômetros de espessura.
Mas era preciso verificar se essa ideia fazia sentido e se o espessamento do manto podia, de fato, fazer a litosfera se curvar. Assumpção pediu então a Sacek, especialista em simulações computacionais, que criasse um modelo matemático para representar as camadas geológicas daquela área de Goiás e Tocantins que levasse em conta todas as forças que atuam sobre elas. Sacek desenvolveu um programa incluindo tanto o efeito de forças locais, originadas a poucas dezenas de quilômetros da região dos sismos por diferenças de relevo (vales, rios e morros) e por variações na espessura da crosta, como o de forças regionais, de escala planetária, que ocorrem a milhares de quilômetros de distância, nas bordas dos blocos em que está dividida a litosfera.
Ao unir esses elementos, Sacek identificou uma zona de fragilidade da crosta que coincide com a área de mais sismos em Goiás e Tocantins. Nesse grande bloco, com 200 quilômetros de largura e 5 de profundidade, as forças são intensas a ponto de superar o limite de elasticidade das rochas e fragmentá-las. “Esse modelo explica até a profundidade dos sismos, que em geral ocorrem a menos de cinco quilômetros da superfície”, afirma Sacek.
Ao unir esses elementos, Sacek identificou uma zona de fragilidade da crosta que coincide com a área de mais sismos em Goiás e Tocantins. Nesse grande bloco, com 200 quilômetros de largura e 5 de profundidade, as forças são intensas a ponto de superar o limite de elasticidade das rochas e fragmentá-las. “Esse modelo explica até a profundidade dos sismos, que em geral ocorrem a menos de cinco quilômetros da superfície”, afirma Sacek.
Ele e Assumpção acreditam que esse mecanismo – a flexura em região de crosta mais fina – pode também ser a causa da elevada frequência de tremores em outras regiões do país, como a bacia do pantanal e a zona sísmica de Porto de Gaúchos, em Mato Grosso, onde em 1955 ocorreu o maior abalo sísmico já registrado no Brasil, com magnitude de 6,2 graus na escala criada por Charles Richter. Os terremotos com magnitude superior a 5 são raros no país – ocorre, em média, um a cada cinco anos. Mas, mesmo fracos, costumam assustar a população, pouco habituada a conviver com os sismos e pouco preparada para lidar com eles. Além de falta de informação sobre como enfrentar os tremores, as residências mais pobres não resistem a abalos pequenos, que causariam poucos danos em uma metrópole. Em 9 de dezembro de 2007, um tremor de magnitude 4,9 danificou várias casas no povoado de Caraíbas, nos arredores de Itacarambi, norte de Minas Gerais, onde a queda de uma parede matou uma criança. “Essa é a única morte direta causada por um terremoto de que se tem notícia no país”, conta o geólogo Cristiano Chimpliganond, da UnB.
A flexura da crosta também explica os terremotos em outra zona sísmica do Brasil: a margem da plataforma continental entre os estados do Rio Grande do Sul e o Espírito Santo. A uma distância que varia de 100 a 200 quilômetros da costa, o fundo do mar sofre um declive abrupto. Nesse degrau, a profundidade do oceano passa de 50 metros para 2 mil metros. Os sedimentos que os rios transportam para o mar se acumulam na extremidade desse degrau, exercendo um peso extra sobre a crosta. Assumpção acredita que essa sobrecarga provoque os sismos detectados nessa região, por mecanismos semelhantes ao que estaria ocorrendo em Goiás e Tocantins. A diferença nesse caso é que o excesso de massa não se encontra sob a crosta, mas sobre ela.
Em um trabalho de 2011, Assumpção e colaboradores da Universidade Estadual Paulista (Unesp), do Instituto de Pesquisas Tecnológicas de São Paulo (IPT) e da Petrobras analisaram um terremoto que ocorreu em abril de 2008 a 125 quilômetros ao sul da cidade de São Vicente, no litoral paulista – e que foi sentido até na cidade de São Paulo. O ponto de origem do tremor foi justamente a extremidade do degrau da plataforma continental e as características de suas ondas sísmicas parecem confirmar a ideia de que foi desencadeado pela sobrecarga de sedimentos.
A elaboração desses modelos sobre a causa dos tremores brasileiros só foi possível graças à descoberta de variações na espessura da crosta terrestre no país. Assumpção e colaboradores da UnB, da Universidade Federal do Rio Grande do Norte (UFRN) e do Observatório Nacional (ON) reuniram informações sobre a espessura da crosta em quase mil pontos na América do Sul, tanto no continente como no oceano – desse total, cerca de 200 medições foram feitas nos últimos 20 anos com financiamento da FAPESP e do governo federal. No mapa que sintetiza esses dados, publicado noJournal of South American Earth Sciences, os pesquisadores chamam a atenção para as regiões onde a crosta é mais espessa ou mais delgada. “A espessura da crosta é um dos parâmetros mais importantes para compreender a tectônica [as forças e os movimentos das camadas geológicas] de uma região”, afirma o sismólogo Jordi Julià, da UFRN.
Essa é a compilação mais completa e detalhada já feita sobre a crosta brasileira. A espessura em todos esses pontos foi obtida a partir da combinação de dados obtidos por três métodos que usam as ondas sísmicas para deduzir a estrutura das camadas geológicas por onde elas passam. O mais preciso deles – e também o mais caro – é a refração sísmica, no qual os pesquisadores registram ao longo de centenas de quilômetros os tremores causados por explosões controladas (ver Pesquisa FAPESP nº 184). Os dois outros métodos se baseiam no monitoramento ao longo de anos dos terremotos que acontecem ao redor do globo.
De modo geral, a crosta no Brasil tem espessura semelhante à dos outros continentes – em média de 40 quilômetros, medidos a partir do nível do mar. Há algumas regiões no país, porém, em que a crosta chega a ser mais fina do que 35 quilômetros. A existência de uma delas – uma faixa de quase mil quilômetros que vai do pantanal, em Mato Grosso do Sul, a Goiás e Tocantins – ainda não está bem delineada, porque há poucas informações sísmicas disponíveis sobre a região. Já no Nordeste, onde foi feita a maioria dos experimentos de refração sísmica pela equipe de Reinhardt Fuck, da UnB, a incerteza é menor.
Fonte:
http://sismosne.blogspot.com.br/
FRANCISCO, Wagner De Cerqueria E. "Terremotos no Brasil "; Brasil Escola. Disponível em . Acesso em 21 de setembro de 2015.
ASSUMPÇÃO, M. e SACEK, V. Intra-plate seismicity and flexural stresses in central Brazil. Geophysical Research Letters. v. 40 (3), p. 487-91. 16 fev. 2013.
ASSUMPÇÃO, M. et al. Crustal thickness map of Brazil: Data compilation and main features. Journal of South American Earth Sciences. v. 43, p. 74-85. abr. 2013.
ASSUMPÇÃO, M. et al. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave dispersion. Tectonophysics. 2013 (on-line).
ASSUMPÇÃO, M. et al. Crustal thickness map of Brazil: Data compilation and main features. Journal of South American Earth Sciences. v. 43, p. 74-85. abr. 2013.
ASSUMPÇÃO, M. et al. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave dispersion. Tectonophysics. 2013 (on-line).
0 comentários:
Postar um comentário